❝ Vá sempre além do que é esperado ❞

Machine Learning: O futuro salvador de vidas

Machine Learning: O futuro salvador de vidas
09 nov 2017

 O que é? O aprendizado automático ou aprendizado de máquina (em inglês: “machine learning”) é um subcampo da ciência da computação que evoluiu do estudo de reconhecimento de padrões e da teoria do aprendizado computacional em inteligência artificial. Em 1959, Arthur Samuel definiu aprendizado de máquina como o “campo de estudo que dá aos computadores a habilidade de aprender sem serem explicitamente programados” (livre tradução). O aprendizado automático explora o estudo e construção de algoritmos que podem aprender de seus erros e fazer previsões sobre dados. Tais algoritmos operam construindo um modelo a partir de inputs amostrais a fim de fazer previsões ou decisões guiadas pelos dados ao invés de simplesmente seguindo inflexíveis e estáticas instruções programadas. Enquanto que na inteligência artificial existem dois tipos de raciocínio (o indutivo, que extrai regras e padrões de grandes conjuntos de dados, e o dedutivo), o aprendizado de máquina só se preocupa com o indutivo.


Com a análise de dados é possível ensinar a máquina a agir de forma proativa para apoiar a medicina preventiva

Machine Learning pra todo lado! Não só na indústria, onde sua aplicação tem sido comum, mas em áreas bastante dependentes da intervenção humana, como finanças, logística e saúde. Especificamente para esta última, as técnicas avançadas de análise de dados e machine learning trazem um ganho exponencial: permitem olhar adiante e auxiliar a medicina preventiva.

Você pode imaginar como isso muda o cenário dos negócios de companhias de convênio médico, consultórios e hospitais, se com base em dados de pacientes, fosse possível usar a análise de dados de uma maneira mais inteligente para sugerir cuidados preventivos em determinadas épocas do ano, ou até mesmo promover um estilo de vida mais saudável?

Machine Learning

Machine Learning

De forma prática, o machine learning é usado para modelar os algorítimos e dar respostas inteligentes a partir da análise avançada de dados. Por isso, big data pode conter muitas informações e as respostas podem estar em poucos dados. O repertório de informações que os cientistas precisam podem ser encontrados em softwares e equipamentos médicos que emitem dados, e para alcançar o modelo de dados ideal, é preciso modelar o algorítimo, refiná-lo, para que a máquina aprenda – com a ajuda do ser humano – a alcançar um modelo de eficiência e se tornar mais inteligente e proativa.

Então, imagine a seguinte situação: um convênio médico pode minerar os registros de dados que os hospitais emitem sobre seus pacientes por meio de um CRM (Customer Relationship Management). A partir das informações selecionadas, é possível criar campanhas e ações preventivas para um determinado grupo de clientes. Esses clientes podem ser trabalhadores de uma mesma empresa que tiveram dengue no verão. O convênio médico pode, proativamente, sugerir uma ação preventiva e informativa sobre a doença para evitar novos casos.

Então, não há dúvidas: o machine learning pode salvar vidas! Este ano, a Universidade da Flórida publicou uma pesquisa com esse viés – cujo impacto é tamanho que se tornou um dos estudos mais comentados ao redor do mundo.

Você já deve ter visto, mas vale recordar que pesquisadores da instituição extraíram dados relacionados a pacientes que já tentaram se suicidar, a partir de prontuários eletrônicos, e utilizaram as técnicas de ML para identificar grupos de pessoas com tendências a tentar algo contra a própria vida.

Os algorítimos de machine learning desenvolvidos por eles, são capazes de prever tentativas de suicídio com até 90% de precisão, até dois anos antes. Fantástico, não?

Em que passo estamos?

Hoje, no Brasil, o uso de machine learning é mais aplicado em recomendações para os consumidores como: músicas, filmes, viagens, ofertas de produtos e serviços. No entanto, é preciso olhar para esse modelo de uma forma mais estratégica, porque o Brasil ainda enfrenta inúmeros problemas na área da saúde que a tecnologia, sozinha, não consegue resolver. São equipamentos antigos que não se comunicam, nem emitem informações; e por não ter interoperabilidade com softwares e outros sistemas, impedem que o machine learning seja usado em sua totalidade.

Com algorítimos matemáticos cada vez mais precisos e baseado nesse histórico de dados, a máquina consegue alertar sobre possíveis doenças, identificar grupos de tendências, entre outros fatores. A aprendizagem de máquinas pode ser aplicada por meio da ligação de cada registro de paciente, nos diferentes conjuntos de dados, automaticamente, para construir uma imagem mais completa da atividade.

Fonte: imasters

 

Share This
× Como posso te ajudar?